
The changing electric fields produce changing magnetic fields that in turn produce changing electric fields, which thereby
propagate as electromagnetic waves. The frequency of this radiation is the same as the frequency of the ac source that is
accelerating the electrons in the antenna. The two conducting elements of the dipole antenna are commonly straight wires.
The total length of the two wires is typically about one-half of the desired wavelength (hence, the alternative name half-
wave antenna), because this allows standing waves to be set up and enhances the effectiveness of the radiation.

Figure 16.9 The oscillatory motion of the charges in a dipole antenna produces
electromagnetic radiation.

The electric field lines in one plane are shown. The magnetic field is perpendicular to this plane. This radiation field has
cylindrical symmetry around the axis of the dipole. Field lines near the dipole are not shown. The pattern is not at all uniform
in all directions. The strongest signal is in directions perpendicular to the axis of the antenna, which would be horizontal
if the antenna is mounted vertically. There is zero intensity along the axis of the antenna. The fields detected far from the
antenna are from the changing electric and magnetic fields inducing each other and traveling as electromagnetic waves.
Far from the antenna, the wave fronts, or surfaces of equal phase for the electromagnetic wave, are almost spherical. Even
farther from the antenna, the radiation propagates like electromagnetic plane waves.

The electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away from
a standing wave on a guitar string. An antenna for receiving electromagnetic signals works in reverse. Incoming
electromagnetic waves induce oscillating currents in the antenna, each at its own frequency. The radio receiver includes a
tuner circuit, whose resonant frequency can be adjusted. The tuner responds strongly to the desired frequency but not others,
allowing the user to tune to the desired broadcast. Electrical components amplify the signal formed by the moving electrons.
The signal is then converted into an audio and/or video format.

Use this simulation (https://openstaxcollege.org/l/21radwavsim) to broadcast radio waves. Wiggle the
transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip
chart shows the electron positions at the transmitter and at the receiver.

16.3 | Energy Carried by Electromagnetic Waves

Learning Objectives

By the end of this section, you will be able to:

• Express the time-averaged energy density of electromagnetic waves in terms of their electric
and magnetic field amplitudes

• Calculate the Poynting vector and the energy intensity of electromagnetic waves

• Explain how the energy of an electromagnetic wave depends on its amplitude, whereas the
energy of a photon is proportional to its frequency
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Anyone who has used a microwave oven knows there is energy in electromagnetic waves. Sometimes this energy is obvious,
such as in the warmth of the summer Sun. Other times, it is subtle, such as the unfelt energy of gamma rays, which can
destroy living cells.

Electromagnetic waves bring energy into a system by virtue of their electric and magnetic fields. These fields can exert
forces and move charges in the system and, thus, do work on them. However, there is energy in an electromagnetic wave
itself, whether it is absorbed or not. Once created, the fields carry energy away from a source. If some energy is later
absorbed, the field strengths are diminished and anything left travels on.

Clearly, the larger the strength of the electric and magnetic fields, the more work they can do and the greater the energy
the electromagnetic wave carries. In electromagnetic waves, the amplitude is the maximum field strength of the electric and
magnetic fields (Figure 16.10). The wave energy is determined by the wave amplitude.

Figure 16.10 Energy carried by a wave depends on its amplitude. With electromagnetic waves,
doubling the E fields and B fields quadruples the energy density u and the energy flux uc.

For a plane wave traveling in the direction of the positive x-axis with the phase of the wave chosen so that the wave
maximum is at the origin at t = 0 , the electric and magnetic fields obey the equations

Ey(x, t) = E0 cos (kx − ωt)
Bz(x, t) = B0 cos (kx − ωt).

The energy in any part of the electromagnetic wave is the sum of the energies of the electric and magnetic fields. This
energy per unit volume, or energy density u, is the sum of the energy density from the electric field and the energy density
from the magnetic field. Expressions for both field energy densities were discussed earlier ( uE in Capacitance and uB

in Inductance). Combining these the contributions, we obtain

u(x, t) = uE + uB = 1
2ε0 E2 + 1

2µ0
B2.

The expression E = cB = 1
ε0 µ0

B then shows that the magnetic energy density uB and electric energy density uE are

equal, despite the fact that changing electric fields generally produce only small magnetic fields. The equality of the electric
and magnetic energy densities leads to

(16.27)u(x, t) = ε0 E2 = B2
µ0

.

The energy density moves with the electric and magnetic fields in a similar manner to the waves themselves.

We can find the rate of transport of energy by considering a small time interval Δt . As shown in Figure 16.11, the energy

contained in a cylinder of length cΔt and cross-sectional area A passes through the cross-sectional plane in the interval

Δt.
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Figure 16.11 The energy uAcΔt contained in the electric

and magnetic fields of the electromagnetic wave in the volume
AcΔt passes through the area A in time Δt .

The energy passing through area A in time Δt is

u × volume = uAcΔt.

The energy per unit area per unit time passing through a plane perpendicular to the wave, called the energy flux and denoted
by S, can be calculated by dividing the energy by the area A and the time interval Δt .

S = Energy passing area A in time Δt
AΔt = uc = ε0 cE2 = 1

µ0
EB.

More generally, the flux of energy through any surface also depends on the orientation of the surface. To take the direction

into account, we introduce a vector S
→

, called the Poynting vector, with the following definition:

(16.28)S
→

= 1
µ0

E→ × B→ .

The cross-product of E→ and B→ points in the direction perpendicular to both vectors. To confirm that the direction of

S
→

is that of wave propagation, and not its negative, return to Figure 16.7. Note that Lenz’s and Faraday’s laws imply

that when the magnetic field shown is increasing in time, the electric field is greater at x than at x + Δx . The electric field

is decreasing with increasing x at the given time and location. The proportionality between electric and magnetic fields
requires the electric field to increase in time along with the magnetic field. This is possible only if the wave is propagating

to the right in the diagram, in which case, the relative orientations show that S
→

= 1
µ0

E→ × B→ is specifically in the

direction of propagation of the electromagnetic wave.

The energy flux at any place also varies in time, as can be seen by substituting u from Equation 16.23 into Equation
16.27.

(16.29)S(x, t) = cε0 E0
2 cos2 (kx − ωt)

Because the frequency of visible light is very high, of the order of 1014 Hz, the energy flux for visible light through any

area is an extremely rapidly varying quantity. Most measuring devices, including our eyes, detect only an average over
many cycles. The time average of the energy flux is the intensity I of the electromagnetic wave and is the power per unit
area. It can be expressed by averaging the cosine function in Equation 16.29 over one complete cycle, which is the same
as time-averaging over many cycles (here, T is one period):

(16.30)
I = Savg = cε0 E0

2 1
T

⌠
⌡
0

T
cos2 ⎛

⎝2π t
T

⎞
⎠dt.

We can either evaluate the integral, or else note that because the sine and cosine differ merely in phase, the average over a

complete cycle for cos2 ⎛
⎝ξ⎞

⎠ is the same as for sin2 ⎛
⎝ξ⎞

⎠ , to obtain
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〈 cos2 ξ 〉 = 1
2

⎡
⎣ 〈 cos2 ξ 〉 + 〈 sin2 ξ 〉 ⎤

⎦ = 1
2 〈 1 〉 = 1

2.

where the angle brackets 〈 ⋯ 〉 stand for the time-averaging operation. The intensity of light moving at speed c in vacuum

is then found to be

(16.31)I = Savg = 1
2cε0 E0

2

in terms of the maximum electric field strength E0, which is also the electric field amplitude. Algebraic manipulation

produces the relationship

(16.32)
I =

cB0
2

2µ0

where B0 is the magnetic field amplitude, which is the same as the maximum magnetic field strength. One more expression

for Iavg in terms of both electric and magnetic field strengths is useful. Substituting the fact that cB0 = E0, the previous

expression becomes

(16.33)I = E0 B0
2µ0

.

We can use whichever of the three preceding equations is most convenient, because the three equations are really just
different versions of the same result: The energy in a wave is related to amplitude squared. Furthermore, because these
equations are based on the assumption that the electromagnetic waves are sinusoidal, the peak intensity is twice the average
intensity; that is, I0 = 2I.

Example 16.3

A Laser Beam

The beam from a small laboratory laser typically has an intensity of about 1.0 × 10−3 W/m2 . Assuming that the

beam is composed of plane waves, calculate the amplitudes of the electric and magnetic fields in the beam.

Strategy

Use the equation expressing intensity in terms of electric field to calculate the electric field from the intensity.

Solution

From Equation 16.31, the intensity of the laser beam is

I = 1
2cε0 E0

2.

The amplitude of the electric field is therefore

E0 = 2
cε0

I = 2
⎛
⎝3.00 × 108 m/s⎞

⎠
⎛
⎝8.85 × 10−12 F/m⎞

⎠

⎛
⎝1.0 × 10−3 W/m2⎞

⎠ = 0.87 V/m.

The amplitude of the magnetic field can be obtained from Equation 16.20:
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B0 = E0
c = 2.9 × 10−9 T.

Example 16.4

Light Bulb Fields

A light bulb emits 5.00 W of power as visible light. What are the average electric and magnetic fields from the
light at a distance of 3.0 m?

Strategy

Assume the bulb’s power output P is distributed uniformly over a sphere of radius 3.0 m to calculate the intensity,
and from it, the electric field.

Solution

The power radiated as visible light is then

I = P
4πr2 =

cε0 E0
2

2 ,

E0 = 2 P
4πr2 cε0

= 2 5.00 W
4π(3.0 m)2 ⎛

⎝3.00 × 108 m/s⎞
⎠
⎛
⎝8.85 × 10−12 C2 /N · m2⎞

⎠
= 5.77 N/C,

B0 = E0 /c = 1.92 × 10−8 T.

Significance

The intensity I falls off as the distance squared if the radiation is dispersed uniformly in all directions.

Example 16.5

Radio Range

A 60-kW radio transmitter on Earth sends its signal to a satellite 100 km away (Figure 16.12). At what distance
in the same direction would the signal have the same maximum field strength if the transmitter’s output power
were increased to 90 kW?
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Figure 16.12 In three dimensions, a signal spreads over a
solid angle as it travels outward from its source.

Strategy

The area over which the power in a particular direction is dispersed increases as distance squared, as illustrated
in the figure. Change the power output P by a factor of (90 kW/60 kW) and change the area by the same factor to

keep I = P
A =

cε0 E0
2

2 the same. Then use the proportion of area A in the diagram to distance squared to find the

distance that produces the calculated change in area.

Solution

Using the proportionality of the areas to the squares of the distances, and solving, we obtain from the diagram

r2
2

r1
2 = A2

A1
= 90 W

60 W,

r2 = 90
60(100 km) = 122 km.

Significance

The range of a radio signal is the maximum distance between the transmitter and receiver that allows for normal
operation. In the absence of complications such as reflections from obstacles, the intensity follows an inverse
square law, and doubling the range would require multiplying the power by four.

16.4 | Momentum and Radiation Pressure

Learning Objectives

By the end of this section, you will be able to:

• Describe the relationship of the radiation pressure and the energy density of an
electromagnetic wave

• Explain how the radiation pressure of light, while small, can produce observable astronomical
effects
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